
Alex Wang @ Stanford University

ASAP Seminar | 2025-02-19 Find me on X @heyyalexwang

Paper link

Test time regression

https://asap-seminar.github.io/
https://x.com/heyyalexwang
https://arxiv.org/abs/2501.12352

Sequence models as a universal abstraction
Why are sequence models ubiquitous?

Sequences as a way to represent information:

Sequences as a way to represent computation:

Learning any transformation on any data format is then “just” sequence-to-sequence learning.

Bit string

Turing

machine

Python

code

Text

RNNs Physics

Audio Video DNA

Maybe we just need to design better
sequence models...

If everything can be reduced to sequences, then...

Sequence models with test-time associative memory
Online learners/Fast-weight programmers

 DeltaNet (Schlag et al., 2021

 Longhorn (Liu et al., 2024

 TTT layers (Sun et al., 2024

 Gated DeltaNet (Yang et al., 2024

 Titans (Behrouz et al., 2024

 DeltaProduct (Siems et al., 2025)

Self-attention (Vaswani et al., 2017)

Linear attention (Katharopoulos et al., 2020)

Linear regression layers

 Mesa-layer (von Oswald et al., 2023

 Intention (Garnelo et al., 2023)

Feature-mapped linear attention

 Performer (Choromanski et al., 2021

 RFA (Peng et al., 2021

 cosFormer (Qin et al., 2022

 Hedgehog (Zhang et al., 2024

 Based (Arora et al., 2024

 ReBased (Arksenov et al., 2024

 DiJiang (Chen et al., 2024)

Gated variants of linear attention

 Gateloop (Katsch 2023

 HGRN-2 (Qin et al., 2023

 LRU (Orvieto et al., 2023

 Mamba (Gu et al., 2023, Dao et al., 2024

 RWKV-6 (Peng et al., 2024

 mLSTM (Beck et al., 2024

 Gated Linear Attention (Yang et al., 2024)

Overview of architectures unified by the test-time regression framework

Background on associative memory
What is associative memory?

> associative memory is defined as the ability to learn and remember the relationship between unrelated items

Eiffel tower“Paris”

Cue/key Response/value

 “Happy birthday to...” “you”

Associative recall and in-context learning
Why do we need associative memory?

Example from Arora et al., 2023:

Similar findings from Elhage et al., 2021, Olsson et al., 2022 on transformer induction heads

One way to do this is to have an associative “working memory” at test-time

Intuition: a good next-token predictor should effectively use contextual clues at test-time

“Hakuna Matata! It means no worries for the rest of

your days! Hakuna Matata means no...”

“worries”

Context: Next-token:

Prompting the matrix-valued associative memory with , we retrieve (perfect recall):

A simple mathematical model for associative memory
Illustrative example

Suppose we have key-value pairs where the keys are orthonormal

We can store these relationships into an outer-product associative memory (Kohonen 1972):

Limitation: orthonormality requires key embedding dimension to scale with

This kind of outer-product associative memory is also known as linear attention (Katharopoulos et al., 2020)

Associative memory as regression
Generalizing our previous example

Suppose we have key-value pairs with relative importance

An associative memory that stores these relationships should have for all stored pairs

Hence memorizing key-value pairs into reduces to solving a regression problem:

Nice properties

 Querying the memory with will return a value close to (fuzzy memory

 The better we solve this objective (e.g. better optimizer or more flexible functions), the better we memorize

A 3-step recipe for deriving a sequence layer
How to design your own sequence model

The regression objective

requires you to specify three “ingredients”

 the relative importance of each associatio

 the function clas

 the minimization algorithm (e.g. gradient descent, Newton’s method, etc.)

Once they are specified, just implement the minimization in the forward pass

A general design pattern for sequence-to-sequence layers
Building an associative memory at test time

Transform inputs

into queries,

keys, and values

Select a subset of associations

 to memorize

(e.g. prefix for causal tasks)

Query the memory to

produce an output

Multiple set of keys/values/queries corresponds having multiple associative memory maps (similar to MHA)

Sharing keys/values/queries corresponds to sharing regression inputs/outputs/prompts (similar to GQA)

Goal: transform input sequence to output sequence

ForPreprocessing

For the rest of the talk, we will work with causal
associative memory:

to memorize key-value pairs up to timestep

Linear attention is suboptimal linear regression
Vignette 1

Following our 3-step recipe, consider

 Choice of weighting: evenly weighte

 Choice of function class: linear function

 Choice of optimizer: analytical solution

This derives the mesa-layer (von Oswald et al., 2023), known to outperform standard linear attention

Dropping the inverse term, i.e. approximating the covariance with , derives linear attention:

Gated linear attention is suboptimal weighted linear regression
Vignette 2

For next-token prediction, recent timesteps are more important.

Hence, consider geometrically-decay weights instead:

The analytical solution is then

Dropping the inverse term like before, we derive the update rule for linear attention with a forgetting gate:

Linear attention implicitly computes batch gradient descent
An alternative perspective

Suppose instead we use gradient descent to minimize :

After only one gradient step, we arrive at the equations for linear attention

In contrast, the analytical solution is equivalent to one step of Newton’s method, a second-order method.

The difference comes from accounting for the curvature of the objective, governed by the covariance

Thus linear attention, and its gated variant, is a first-order method for doing test-time regression!

since the gradient is

 Initialize at the origi

 Perform one update: when step size

Fast-weight programmers as SGD
Vignette 3 Part 1

Having done full batch gradient descent, consider online/stochastic gradient descent instead:

This derives the update rule of DeltaNet (Schlag et al., 2021), later parallelized by Yang et al., 2024.

At each step , we use the latest to perform a single-example gradient step, using each iterate to

store the associations in :

Online learners perform SGD with adaptive step sizes
Vignette 3 Part 2

Liu et al. 2024 derived a recurrence for Longhorn via an online-learning objective,

Comparing to our SGD update, we see that this is equivalent to using a data-adaptive step size

SGD with L2 regularization
Vignette 3 Part 3

Consider minimizing a regularized least squares objective

The update rule of SGD then becomes

equivalent to Gated DeltaNet (Yang et al., 2024) after an invertible reparameterization, decoupling weight

decay from the learning rate like AdamW (Loshchilov et al., 2019)

Can we develop nonlinear associative
memory?

The function classes so far have all been linear ...

Nonlinear associative memory by featurizing linear attention
The simplest nonlinear associative memory

Instead of using the original query-key space, we can transform them via a feature map

Examples of feature maps include

 1 + ELU map (Katharopoulos et al., 2020

 RELU (Kasai et al., 2021

 Cosine map (Qin et al., 2021

 Deterministic parameter-free projections (Schlag et al., 2021

 SiLU (first used by Gu et al., 2023

 Polynomial feature maps (Poggio 1975 ; Zhang et al. 2024; Arora et al., 2024

 Random features: RFA (Peng et al., 2021), Performer (Choromanski et al., 2021), DiJiang (Chen et al., 2024)

Kernel regression with infinite-dimensional feature maps
Going infinite

To further increase the flexibility of our function class, we can apply the kernel trick:

Querying our associative memory the produces the output

Kernel-regression-as-a-layer and its approximations has used in many past architectures, including SOFT (Lu et

al., 2021), Performers (Choromanski et al., 2021), Skyformer (Chen et al., 2021), and intention (Garnelo et al.,

2023)

When , and we approximate the inverse with the identity, we derive an

unnormalized softmax attention. Can we do better?

Intuition for local polynomial estimators
Background on a classic nonparametric regressor

Suppose we have observations .

We want to use all our observations to predict the value associated with a query .

What can we do

 Fit an order polynomial centered at

 Use the polynomial’s value at as the prediction

Intuition: use observed data to find the best Taylor expansion around a new point

Zeroth order prediction

Second order prediction

First order prediction

Local polynomial associative memory
Back to architecture design

Following our 3-step recipe

 Choice of weights: weight each point by a monotonic function of the distance ,

since we want to fit a local polynomia

 Choice of function class: the set of order polynomials around :

 Choice of optimizer: analytical solution, solving for where each is an order

tensor/multilinear map

Typically, local polynomial regression is done for 1D data. We generalize it to the multivariate case.

Self-attention with QKNorm is a locally constant regressor
Deriving attention

Solving the zeroth order (locally constant) estimator, we get self-attention:

When keys and queries are normalized to unit length, the exponential smoothing kernel recovers the

exponential dot product, and our weights are monotonic with respect to the distance

Corollary: we can also derive higher order variants of self-attention!

Solving regression with a single forward pass
A direct comparison

We generate a set of keys and values from a non-

stationary (switching) process, simulating a next-token

prediction task:

Using the regression-memory correspondence, we apply

each test-time regression layer to the key-value pairs

without any learnable parameters

We’ve defined the test-time regression models,
but what about the test-time regression data?

Short convolution is all you need (on MQAR)
For creating associations

“Hakuna Matata! It means no worries for the rest of

your days! Hakuna Matata means no...”

To predict “worries” given context

it suffices to use a short convolution to “look back”/shift:

The associative memory then stores adjacent pairs, 

such as (Hakuna, Matata) and (no, worries)

Short conv imitates an induction head of a transformer

(first introduced in H3 by Fu et al., 2023)

A unified framework for sequence model design
Summary

All of these sequence layers construct and query an
associative memory via test-time regression in their
forward pass

Parametric associative memory usually has an efficient
recurrent update, at the cost of forgetting the past

Nonparametric regression

Performer, cosFormer,
RFA, Hedgehog, Based,

Rebased, DiJiang

Parametric regression

(first order optimizer)

Parametric regression

(second order optimizer)

Mesa-layer Intention

Self-attention

&

higher order generalizations

Newton’s method Kernel regression

Local polynomial estimation

Batch gradient descent

Batch gradient descent

with nonlinear feature maps

Stochastic gradient descent

Linear attention, Mamba, GLA, HGRN,
Gateloop, RWKV, RetNet, mLSTM, LRU

DeltaNet, TTT, DeltaProduct

Longhorn (adaptive step size)

Gated DeltaNet (L2 regularization)

Titans (momentum)

If you enjoyed this talk, you can find me on X @heyyalexwang!

State-tracking?

Life-long learning?

Other ways to use associative memory?

Episodic memory?
 Overparameterized parametric regressors?

Parallelizable adaptive optimizers?

https://x.com/heyyalexwang

